A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature
نویسندگان
چکیده
The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.
منابع مشابه
Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls
The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of ...
متن کاملFacile one-step room-temperature synthesis of Pt3Ni nanoparticle networks with improved electro-catalytic properties.
Pt(3)Ni alloy nanoparticle networks (Pt(3)Ni NN) were prepared through a simple one-step room-temperature synthetic method. The as-prepared Pt(3)Ni NN exhibited markedly improved activity for both oxygen reduction reaction and electrocatalytic oxidation of small organic molecules over the Pt nanoparticle networks (Pt NN) and commercially available Pt/C.
متن کاملContinuous flow synthesis of citrate capped gold nanoparticles using UV induced nucleation
A new approach for synthesising gold nanoparticles of controlled size in the presence of trisodium citrate is presented. UV light is employed as a photoinitiator for the reduction of Au(III) by citrate. The UV induced nucleation takes place in a glass capillary tube (0.8 mm internal diameter) illuminated by a series of germicidal UVC lamps. This has been coupled sequentially with a heated coil ...
متن کاملSize tunable gold nanoparticle and its characterization for labeling application in animal health
Aim: The aim of the present study was to synthesize different sizes of gold nanoparticles (GNPs) and their characterization for use as a label in lateral flow assay particular for the detection of bluetongue in small ruminants. Materials and Methods: Size controlled synthesis of GNPs was done by using different concentration of sodium citrate. In this study, five different types of GNP were syn...
متن کاملSpectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles
We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs). This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed ...
متن کامل